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ABSTRACT
Radio frequency interference (RFI) detection and excision are key steps in the data-processing
pipeline of the Five-hundred-meter Aperture Spherical radio Telescope (FAST). Because
of its high sensitivity and large data rate, FAST requires more accurate and efficient RFI
flagging methods than its counterparts. In the last decades, approaches based upon artificial
intelligence (AI), such as codes using convolutional neural networks (CNNs), have been
proposed to identify RFI more reliably and efficiently. However, RFI flagging of FAST data
with such methods has often proved to be erroneous, with further manual inspections required.
In addition, network construction as well as preparation of training data sets for effective
RFI flagging has imposed significant additional workloads. Therefore, rapid deployment and
adjustment of AI approaches for different observations is impractical to implement with
existing algorithms. To overcome such problems, we propose a model called RFI-Net. With
the input of raw data without any processing, RFI-Net can detect RFI automatically, producing
corresponding masks without any alteration of the original data. Experiments with RFI-Net
using simulated astronomical data show that our model has outperformed existing methods
in terms of both precision and recall. Besides, compared with other models, our method
can obtain the same relative accuracy with fewer training data, thus reducing the effort and
time required to prepare the training data set. Further, the training process of RFI-Net can
be accelerated, with overfittings being minimized, compared with other CNN codes. The
performance of RFI-Net has also been evaluated with observing data obtained by FAST and
the Bleien Observatory. Our results demonstrate the ability of RFI-Net to accurately identify
RFI with fine-grained, high-precision masks that required no further modification.
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1 IN T RO D U C T I O N

Any undesired signal received by radio telescopes can be referred to
as radio frequency interference (RFI; see Mosiane et al. 2017). The
spectral coverage of radio astronomical observations often overlaps
with radio emissions originating from modern civilization. These
sources of RFI negatively affect data analysis. They can be roughly
classified into sporadic emissions, which may erupt occasionally
with pulse-like structures, and persisting emissions (e.g. Offringa
et al. 2010a; An et al. 2017). Construction equipment with electric
motors, digital cameras and other similar electronic devices all
generate RFI of the former type, usually contaminating multiple
channels in the frequency domain (wide band). However, television,
mobile phone infrastructure and radio stations usually operate in
designated bands. Their emissions, along with the harmonics of their
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local oscillator frequencies, can give rise to persisting narrow-band
RFI. All RFI can either originate from devices directly related to
radio telescopes themselves (including on-site electronics, network
systems, data-processing computers, etc.) or come from mobile or
fixed sources outside the observatory. Besides, natural radio emitters
such as the ground, lightning and the Sun can also give off extra
RFI (Indermuehle et al. 2016).

As can be seen in Fig. 1, typical RFI can be much brighter
than background noise or astronomical signals. Therefore, radio
observations with a wide band coverage are easily affected by
interference caused by human activities. Some weaker RFI may not
be easily distinguished from celestial sources. Also, as occasionally
seen in the observed data of FAST, RFI can also occur in the form
of fluctuations in baselines, appearing randomly at any time or
frequency channel, as shown in Fig. 2. It should be noted that with
higher amplitudes (although much lower than typical RFI), such
fluctuations should not be mistaken for standing waves (Briggs
et al. 1997) with quasi-stable periodic structures in the frequency
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Figure 1. Data acquired by FAST shown in the time–frequency plane.
Bright stripes mark the distribution of RFI.

Figure 2. Example of sporadic baseline fluctuations in FAST data. It can
be seen that a wide bulge exists at ∼1373.2 MHz. The amplitude of the
bulge is obviously higher than the background continuum, although still
weaker than common RFI. Also, an extragalactic H I absorption line with a
double-horned structure can be seen at ∼1374.15 MHz. The readings along
the y-axis are shown in normalized instrumental units without calibration.

domain (Popping & Braun 2008). Generally speaking, random
fluctuations observed by FAST usually exhibit widths of the same
order of magnitude as extragalactic H I lines, although they may
show broad single-peaked structures, in contrast with the double-
horned structures of the H I line. Therefore, although such random
fluctuations cannot be simply classified as RFI, we still need to
mitigate the effects of such weak signals in radio astronomical data.

One of the most ideal and effective approaches to minimize the
effect of RFI is to mitigate it by establishing a radio quiet zone
(RQZ) surrounding a telescope, in order to regulate RFI-emitting
device operations within this area (An et al. 2017). For example,
the Australian Communications and Media Authority (ACMA)
has arranged a RQZ in Western Australia (Wilson et al. 2016)
for the safe operation of radio astronomical instruments, including
the low-frequency facility of the planned Square Kilometre Array
(SKA). Similarly, with a government order called ‘Regulations for
Protection of Electromagnetic Wave Quiet Zone’, Guizhou Province
in China has also established a RQZ for FAST (see Zhang et al. 2013;
Guizhou Provincial People’s Government 2019; see also Fig. 3),
protecting its observing band from 70 to 3000 MHz (Nan et al.
2011).

Nevertheless, because emissions from sources such as artificial
satellites cannot be minimized by ground-based RQZs, and strong
signals originating outside such areas can also be detected by radio

Figure 3. The RQZ established by the Guizhou Provincial People’s
Government. With the FAST site at its centre, the RQZ can be divided
into a core area (r ≤ 5 km), an intermediate area (r = 5−10 km) and a
remote area (r = 10−30 km), according to distance r to the telescope. In
the core area of this RQZ, it is forbidden to set up or use any radio stations,
or to build and operate facilities that emit radio waves. In the intermediate
area, it is prohibited to set up or use radio stations with working frequencies
between 68 and 3000 MHz and with effective radiation power higher than
100 W. In the remote area, electromagnetic compatibility analysis should be
conducted when setting up radio stations, or utilizing facilities with working
frequencies between 68 and 3000 MHz and with effective radiation power
higher than 100 W. (Data source: Guizhou Provincial People’s Government
2019).

telescopes, RFI detection still poses a challenge to radio observa-
tions, and the ability to detect RFI is an important issue for radio
astronomical data reduction. The correctness and completeness of
RFI flagging operations greatly affects the scientific output of each
telescope. Moreover, the increase of human activities has boosted
the complexity and occurrences of RFI, and complicated the task
of RFI detection. Therefore, in this study, our aim is to develop a
suitable model to process the data acquired with FAST. Compared
with other telescopes, such as Arecibo or Effelsberg, FAST has
a superior sensitivity, thus rendering itself extremely vulnerable
to RFI. As a result, FAST needs a more accurate RFI detection
algorithm. Considering this telescope’s various scientific goals,
such as neutral hydrogen sky surveys and pulsar observations, the
requirements of rapid adjustment and deployment should also be
considered.

Traditional RFI detection methods are mainly based on threshold
algorithms (Offringa et al. 2010b; Baan, Fridman & Millenaar
2004), as well as on the physical characteristics of the RFI in the
time–frequency domain (e.g. the linear detection; see Wolfaardt
2016). Related image-processing techniques are subsequently ap-
plied to improve the appearance at the edges of RFI detection.
However, in actual applications, manual interventions are often
required to refine or confirm the locations and ranges of interference,
as well as to specify related parameters of the algorithm, thus greatly
reducing the processing efficiencies.

Currently, artificial intelligence (AI) technology represented by
deep learning techniques has been used to detect RFI. Burd et al.
(2018) have applied recurrent neural networks (RNNs) to flag
RFI, while Akeret et al. (2017b) have performed similar tasks
with convolutional neural networks (CNNs). Czech, Mishra &
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Figure 4. Detection result of U-Net (Akeret et al. 2017b) with observed
data of FAST. The figure on the left shows the original data, and the figure on
the right the detection result. It can be seen that the result looks like random
noise. A large amount of RFI at the upper-left corner and the bottom of
the figure is not correctly detected, while too many false RFI signals are
detected along the time axis (shown as vertical stripes).

Inggs (2018) combined RNNs and CNNs to classify transient RFI
sources. The application of AI technology has greatly reduced the
workloads of astronomers, thus increasing the efficiency of data
reduction. Yet, compared with traditional methods, the detection
accuracies of existing deep learning algorithms still show very little
advantage. Such methods usually have relatively low robustness,
and are thus unable to identify complicated RFI effectively. For
example, it can be clearly seen that the data shown in Fig. 4 require
further processing. However, blindly improving the accuracy often
leads to problems of overfitting. In addition, AI approaches could
also be time-consuming, and considerable efforts are required to
prepare a large amount of training data to train the neural network.
Thus, efficient and fast adaptation would be impractical for such
algorithms.

Inspired by these pioneering works, in this paper, we propose
a new model that can improve the detection robustness without
introducing artificial artefacts. Two types of residual learning (He
et al. 2016b; Arsalan et al. 2019) units have been adopted for down-
sampling and up-sampling processes in our CNN-based model, thus
improving the accuracy without the requirements of large amounts
of data. In addition, our model obviates the need for pre-treatments
or further polishing, thereby increasing the efficiency and reliability
of the process.

Thus, the work presented in this paper can be summarized as
follows.

(i) A network architecture called RFI-Net provides higher accu-
racy and minimal false-positives for RFI detection.

(ii) Two types of residual units are utilized, which can lead to
equally or more accurate detections with fewer training data.

(iii) A standalone method is proposed without the need for
additional operations to achieve high efficiency and reliability.

In Section 2, we provide a brief overview and analysis of related
work. In Section 3, we present the proposed RFI-Net with details of
its features. In Section 4, we introduce the data set and framework
for all experiments carried out in this study. In Section 5, we present
the experiments and results. We conclude in Section 6.

2 R FI DETECTION METHODS

Generally speaking, RFI detection algorithms search for possible in-
terference with specific signatures in the observed data, and produce
RFI masks marking the positions of detected interference. Currently,

traditional ways of RFI flagging include linear algorithms, such
as SVD (Offringa et al. 2010b) and PCA (Wolfaardt 2016),
and threshold-based methods, such as SumThreshold (Offringa
et al. 2010b) and CUMSUM (Baan et al. 2004). Also, with the
development of AI in image recognition (Gómez-Rı́os et al. 2019)
and natural language processing (Evans et al. 2019), AI-related
algorithms have been invoked by various branches in astronomy,
from classifications of variable stars with enhanced performance in
light-curve classification benchmarks (Aguirre, Pichara & Becker
2018), to pulsar candidate identifications (Zhu et al. 2014). Also,
in the radio band, efforts have been made to apply CNNs (Akeret
et al. 2017b) and RNNs (Czech et al. 2018) to RFI detection.

2.1 Classical methods: SumThreshold as an example

Because the signal strength of RFI is usually much stronger than that
of typical astronomical signals, classical algorithms are based on
the physical characteristics of RFI. One of the notable approaches
is SumThreshold, which is one of the most widely used algorithms
(Akeret et al. 2017b). Introduced by Offringa et al. (2010a), the
SumThreshold method has been proved to yield the highest accuracy
among classical detection algorithms. SumThreshold can also be
applied in combination with other algorithms, such as curvature
fitting, to achieve better results (Offringa et al. 2010a).

However, it is possible that the original SumThreshold method
could mistake many ‘good’ samples as RFI, if no additional rules
have been applied. Taking the data set [0, 0, 5, 6, 0, 0] from Offringa
et al. (2010b) as an example, the data points with values of 5 and
6 contain strong interference. As SumThreshold adopts a series of
thresholds for average values of different-sized pixel combinations
to identify RFI, we adopt a decreasing sequence χ1 = 7, χ2 =
5, χ3 = 4, ···, χ6 = 1.8 as thresholds of averaged values for 1,
2, 3, ···, 6 pixels, respectively, as with Offringa et al. (2010b).
With an averaged value larger than 6χ6, all six samples in the
example data set should be marked as RFI. In order to avoid such
mislabelling, it is common practice to inspect pixel combinations
with increasing sizes in the data set. If a threshold χn for n-pixel
combinations classifies a certain area as RFI, the readings of marked
pixels should be replaced by χn, leading the final average of our
example to be 2χ6

6 = 0.6 < χ6 (Offringa et al. 2010b). However,
the exact values of each threshold also need to be finely tuned, thus
increasing the need for manual interventions with this method. It is
difficult to flag weak interference or unwanted baseline fluctuations
with thresholding algorithms, as they can show flux levels similar
to astronomical signals.

2.2 Detecting RFI with AI

RFI flagging using CNN-based models has been studied in recent
years (e.g. Akeret et al. 2017b). In terms of accuracy, currently,
the best variation of the CNN model should be the U-Net model
described in Akeret et al. (2017b). Here, we present an overview of
the CNN model, along with descriptions of the U-Net model.

Computer vision adopts the CNN as its main network scheme.
The basic operation of the CNN is convolution, in which the
summed value of the product from the convolutional kernel multi-
plies all sample values within an area covered by the kernel. Shallow
convolutional operations extract textural information of images,
while deep ones can integrate features obtained with shallow
networks to obtain image semantics (Ronneberger, Fischer & Brox
2015). Thus, each layer of the CNN performs convolution on
one or more planes, extracting information from them, and it
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applies pooling to reduce the volume of information. In this way,
with multiple convolutions and pooling, specific information about
certain areas of the image can be obtained. CNNs are suitable to
make identifications in structural data, that is, data associated with
spatially adjacent counterparts (e.g. images).

The U-Net model was originally proposed to meet the challenge
as part of a workshop held prior to the IEEE International Sympo-
sium on Biomedical Imaging (ISBI) 2012 with notable results (Ron-
neberger et al. 2015). It can be considered as CNNs with extended
architectures, which have been adjusted for RFI detection (Akeret
et al. 2017b). It utilizes down- and up-sampling operations to extract
required information (such as RFI) from original data, enabling the
network to actually ‘learn’ about the extracted characteristics. In
this model, shallow-layered convolutions make identifications of
fine features in data (e.g. RFI intersections), while deeper networks
are used to splice such features into more abstract forms (Akeret
et al. 2017b). Meanwhile, features extracted by pooling operations
during down-sampling are passed as copies to the right side after
several steps of up-sampling, thus completing a U-shaped structure.
With intensive tests, a structure with three layers and 64 feature
graphs has achieved a good balance between flagging accuracy and
computational cost. A structure like this can be seen in fig. 1 of
Akeret et al. (2017b).

Akeret et al. (2017b) have also tested the U-Net model with data
acquired by the Bleien Observatory (Cosmology Research Group
from ETH Zurich 2016). The visual inspections have been compared
with results from U-Net, demonstrating the advantages of the latter
technique with graphs as well as index scores. It has been proven
that the U-Net model has an advantage over traditional RFI flagging
algorithms.

2.3 Analysis of previous methods

RFI with repetitive temporal or spectral behaviours, such as radar or
radio beacon emissions, can be best identified using linear detection-
based algorithms, although such methods are not suitable to detect
stochastic RFI, including pulse-like signals, and RFI with frequency
drifts (Akeret et al. 2017b). In contrast, thresholding algorithms are
more effective if the observed background is relatively stable and
the RFI is distributed discretely. Thresholding has the advantages
of relatively fast execution speed, easy implementation and high
efficiency and robustness (with properly adjusted parameters), so
it is best to flag strong RFI. Also, algorithms incorporating the
SumThreshold method are especially popular in radio astronomy
(Akeret et al. 2017b). However, in the presence of weak in-
terference or baseline fluctuations with fluxes comparable with
celestial sources, or broad-band signals/extremely large amounts
of RFI (which means that most channels are RFI-contaminated),
thresholding methods would become less effective, if not
useless.

Methods invoking machine learning/deep learning techniques
could greatly reduce manual involvements, thus enhancing the
automation level of RFI detections. However, in terms of practical
applications, these algorithms have not achieved satisfactory de-
tection accuracy. As shown in Fig. 4, the U-Net model proposed
by Akeret et al. (2017b) has identified too many time domain
structures as RFI; however, interference in the frequency domain
and point-like RFI have been largely ignored. Furthermore, a lot of
noise (also described as false-positive) exists in the flagging results,
especially at the edges of regions identified as RFI. Apparently, such
performance needs to be further refined, which may decrease the
efficiency of the algorithm as a result. Moreover, training neural

Figure 5. Structure of RFI-Net. Here, Conv denotes convolutional compu-
tation, BN is batch normalization and ReLU denotes the Rectified Linear
Unit, which is a non-linear activation function (Krizhevsky, Sutskever &
Hinton 2012). Max Pool refers to a sample-based discretization process for
down-sampling of input representation, taking the maximum of the input,
reducing its dimensionality and making assumptions about features of the
input data (Boureau, Ponce & LeCun 2010). Dropout is used to prevent
overfitting, as well as to reduce the time spent on training (Srivastava et al.
2014). Identify Mapping makes it easier to train the network (He et al.
2016a).

networks like this often requires large amounts of pre-labelled
data. While RFI flagging with raw data is a time-consuming and
tedious task, considering the requirements for subsequent training,
it would not be easy to make adjustments to existing approaches
to improve their suitability for RFI detection in different observing
configurations (Aguirre et al. 2018).

3 R FI-NET FOR R FI DETECTIONS AT FA ST

To overcome the shortcomings of algorithms discussed so far, we
propose a new model combining U-Net with a residual network.
In this model, the corresponding layers are connected with short
cuts, which are shown in Fig. 5 as horizontal lines connecting the
left and right sides. Two types of residual units have been designed
and constructed. In addition, two other hyperparameters have been
introduced to further enhance the performance.1

3.1 Architecture of RFI-Net

We have constructed our model with two steps. For the first step,
we add more layers to U-Net, as shown in Fig. 5(a). This is because,
for deep learning algorithms, the depth of a certain neural network

1The codes related to this work are available at GitHub https://github.com
/DuFanXin/RFI-Net.
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Table 1. RFI-Net structure in detail. BN means batch normalization for more stable data distributions, while transpose is sometimes
called ‘deconvolution’ after deconvolutional networks, but it is in fact the transpose of the convolution. Most of the layers take ReLUs as
activation functions to minimize the problem of gradient vanishing or explosion. In the last layer, SoftMax, the bracket means that if the
network is in the process of training, it needs SoftMax only. Otherwise, ArgMax should also be processed to obtain the RFI flagging result.

Layer Operation Input size Filter size Output size

conv 1 Conv+BN+ReLU 256 × 128 × 1 3 × 3 × 1 × 32 256 × 128 × 32
conv 2 Conv+BN+ReLU 256 × 128 × 32 3 × 3 × 1 × 32 256 × 128 × 32
down residual unit 1 Conv+BN+ReLU Conv+BN 256 × 128 × 32 256 × 128 × 64

Conv+BN+ReLU
Conv+BN

max pool 1 Max pooling+Dropout 256 × 128 × 64 1 × 2 × 2 × 1 128 × 64 × 64
down residual unit 2 Conv+BN+ReLU Conv+BN 128 × 64 × 64 – 128 × 64 × 128

Conv+BN+ReLU
Conv+BN

max pool 2 Max pooling+Dropout 128 × 64 × 128 1 × 2 × 2 × 1 64 × 32 × 128
down residual unit 3 Conv+BN+ReLU Conv+BN 64 × 32 × 128 – 64 × 32 × 256

Conv+BN+ReLU
Conv+BN

max pool 3 Max pooling+Dropout 64 × 32 × 256 1 × 2 × 2 × 1 32 × 16 × 256
down residual unit 4 Conv+BN+ReLU Conv+BN 32 × 16 × 256 – 32 × 16 × 512

Conv+BN+ReLU
Conv+BN

max pool 4 Max pooling+Dropout 32 × 16 × 512 1 × 2 × 2 × 1 16 × 8 × 512
down residual unit 5 Conv+BN+ReLU Conv+BN 16 × 8 × 512 – 16 × 8 × 1024

Conv+BN+ReLU
Conv+BN

up sample 1 Transpose+BN+ReLU 16 × 8 × 1024 1 × 2 × 2 × 1 32 × 16 × 512
concat 1 Concatenate 2 × (32 × 16 × 512) – 32 × 16 × 1024
up residual unit 1 Conv+BN+ReLU Conv+BN 32 × 16 × 1024 – 32 × 16 × 512

Conv+BN+ReLU
Conv+BN

up sample 2 Transpose+BN+ReLU 32 × 16 × 512 1 × 2 × 2 × 1 32 × 16 × 256
concat 2 Concatenate 2 × (64 × 32 × 256) – 64 × 32 × 512
up residual unit 2 Conv+BN+ReLU Conv+BN 64 × 32 × 512 – 64 × 32 × 256

Conv+BN+ReLU
Conv+BN

up sample 3 Transpose+BN+ReLU 64 × 32 × 256 1 × 2 × 2 × 1 128 × 64 × 128
concat 3 Concatenate 2 × (128 × 64 × 128) – 128 × 64 × 256
up residual unit 3 Conv+BN+ReLU Conv+BN 128 × 64 × 256 – 128 × 64 × 128

Conv+BN+ReLU
Conv+BN

up sample 4 Transpose+BN+ReLU 128 × 64 × 128 1 × 2 × 2 × 1 256 × 128 × 64
concat 4 Concatenate 2 × (256 × 128 × 64) – 256 × 128 × 128
up residual unit 4 Conv+BN+ReLU Conv+BN 256 × 128 × 128 – 256 × 128 × 64

Conv+BN+ReLU
Conv+BN

conv 2 Conv+BN 256 × 128 × 64 3 × 3 × 64 × 2 256 × 128 × 2
softmax SoftMax(+ ArgMax) 256 × 128 × 2 – 256 × 128 × 1

can be of great importance. Regardless of filter sizes or chosen
widths, a deeper network can usually achieve more optimal results,
compared with shallower networks with roughly the same temporal
complexity (He & Sun 2015), because an increase in depth can lead
to more information being extracted. Furthermore, compared with
a shallower network, a deeper network can significantly enhance
the capability to perform tasks that are more computationally
demanding. For the second step of our model construction, the
residual units have been built into the network, as shown in Fig. 5(b).
Identity mappings serve as short cuts to connect three convolutional
layers. Two types of residual units have been designed in this work.
The unit marked with orange dotted lines in Fig. 5(b) is used for
down-sampling, thereby doubling the number of channels, whereas
the unit indicated by blue dotted lines halves the number of channels

for up-sampling. To support this structure, the network adopts batch
normalization to normalize the input data, and it is equipped with
a fast and stable optimizer. Detailed descriptions of the network
structure are provided in Table 1.

3.2 Residual units

The residual units have been added to prevent network degeneration.
When a deep network no longer diverges despite implementations
of various optimizations, it will begin to degrade: with an increasing
network depth, the detection accuracy would finally meet a ‘bot-
tleneck’, with rapidly growing training errors afterwards. It should
be noted that such errors introduced by network degradation are

MNRAS 492, 1421–1431 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/492/1/1421/5700555 by guest on 09 M
arch 2021



1426 Zhicheng Yang et al.

Table 2. Detailed hyperparameters of the residual unit for down-sampling. Here, H represents the height of the data,
W is the data width and C is the number of channels. The input data of ‘short cut’ and ‘conv 1’ layers are identical. The
layer ‘add’ has two sources of inputs: layers ‘conv 1’ and ‘short cut’.

Layer Operation Input size Filter size Output size

conv 1 Conv+BN+ReLU H × W × C 3 × 3 × C × 2C H × W × 2C
conv 2 Conv+BN+ReLU H × W × 2C 3 × 3 × 2C × 2C H × W × 2C
conv 3 Conv+BN H × W × 2C 3 × 3 × 2C × 2C H × W × 2C
short cut Conv+BN H × W × C (same as conv 1 input) 1 × 1 × C × 2C H × W × 2C
add Add+BN+ReLU H × W × 2C (from conv1 result) – H × W × 2C

+H × W × 2C (from short cut result)

Table 3. Detailed hyperparameters of the residual unit for up-sampling. Here, H represents the height of the data, W
is the data width and C is the number of channels. This unit halves the channel number of the data.

Layer Operation Input size Filter size Output size

conv 1 Conv+BN+ReLU H × W × C 3 × 3 × C × C/2 H × W × C/2
conv 2 Conv+BN+ReLU H × W × C/2 3 × 3 × C/2 × C/2 H × W × C/2
conv 3 Conv+BN H × W × C/2 3 × 3 × C/2 × C/2 H × W × C/2
short cut Conv+BN H × W × C (same as conv 1 input) 1 × 1 × C × C/2 H × W × C/2
add Add+BN+ReLU H × W × C/2 (from conv1 result) – H × W × C/2

+H × W × C/2 (from short cut result)

a result of more biased calculations caused by a larger number of
layers, rather than overfitting (He et al. 2016b).

Therefore, inspired by the residual network (He et al. 2016b), we
introduce short cuts to our model (represented by the dotted boxes
in Fig. 5),

z = F (x) (1)

where x and z denote the input and output, respectively. Identity
mapping in most residual networks can be represented as follows:

z = F (x) + x. (2)

Equation (2) expresses that the input should be directly added to
the result of the convolutional operations. However, since identity
mapping does not have the flexibility to resize, especially with
respect to channel numbers, RFI-Net chooses to perform convolu-
tional operations with a kernel size of 1 × 1. With the assistance of
batch normalization, the short cut can be expressed as

z = F (x) + H (x), (3)

where H(x) denotes the combination of 1 × 1 convolution, as
well as batch normalization. Our network design adopts two units
corresponding to the processes of down- and up-sampling to
make adjustment of channel numbers possible. Details of the unit
hyperparameters are presented in Tables 2 and 3.

By connecting three layers as a unit, the short cuts can stabilize
the update process, and slow down the gradient disappearance
resulting from the inability of the model’s middle layers to update
the parameters effectively. Moreover, it is expected that models with
short cuts should not only see improvements of their performance,
but also achieve a faster convergence speed (Drozdzal et al. 2016).
In addition, the long connecting structures used in the U-Net model
could give rise to a slower learning rate with unstable parameter
updates (Drozdzal et al. 2016). In contrast, a network equipped
with short cuts makes a larger initial learning rate possible, thus
accomplishing a faster convergence.

3.3 Additional hyperparameters

Batch normalization, which is generally referred to as batch-norm,
is achieved by using an algorithm to normalize batches of data with
adjustments of averaged data to 0, and the variance to 1. Let m
be the size of input sample X = (x1, ···, xm). The normalized data
should be calculated as

μ = 1

m

m∑

i=1

xi, (4)

σ 2 = 1

m

m∑

i=1

x2
i −→ σ 2 = 1

m

m∑

i=1

(xi − μ)2 (5)

and

xi = xi − μ√
μ2 + ε

−→ xi = xi − μ√
σ 2 + ε

. (6)

Equation (4) calculates the mean value of the sample, with
equation (5) providing the sample variance. Equation (6) subtracts
the mean value from each data point in the sample, dividing the
results with the variance, thus completing the normalization process.
The bias ε is introduced in equation (6) to prevent the occurrence of
zero in the divisor. Without batch normalization, the neural network
needs to constantly update the parameters with continuous back-
propagation to obtain results from each layer. As the distribution
of such results could change continually (Ioffe & Szegedy 2015),
time-to-time re-adjustments of parameters from the previous layer
are required to accommodate new distributions, thus preventing
the model from achieving a faster learning rate during training.
The application of batch normalization ensures that the resulting
distribution of each layer can be nearly constant with time, thus
avoiding the need to re-adjust the previous layer. However, because
each layer is normalized, the absolute values of the results are small,
with results from the front layers differing insignificantly from those
of the back layers, which can lead the network model to ‘learn’
features ineffectively (Ioffe & Szegedy 2015). Thus, a controllable
adjustment method to appropriately scale the normalized results is
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proposed:

yi = γ xi + β. (7)

In equation (7), γ has the task of scaling sizes of the normalized
results, whereas β shifts the result. Both of these parameters can
make self-learning possible. Scaling is used to restore the result to
its original value at least (Ioffe & Szegedy 2015). This approach
based on batch normalization enables the model’s learning rate
to be accelerated without the need to impose strict parameter
initialization, thus promoting faster convergence.

The optimizer strategy we adopted here to set the mini-batch size
in the hyperparameter is called the small batch gradient descent,
which is used in combination with the Adam algorithm (Kingma &
Ba 2015) as the computing strategy for gradient descent. This
strategy can speed up the gradient descent, and minimize oscillation
of the gradient.

The small batch gradient descent is based on the stochastic
gradient descent method (Ruder 2016), which adopts a sample
size between that of the batch and the random gradient drop. This
method selects samples from data to calculate the gradient, and
then performs the gradient drop. This approach not only enables
the gradient to decrease at a faster rate, but also ensures that the
gradient remains relatively stable during gradient descent.

The Adam algorithm (Kingma & Ba 2015), which combines
Momentum (Lv, Jiang & Li 2017) with RMSprop (Ruder 2016),
uses both first- and second-order moments, and performs a similar
standardized operation on the gradient. The main advantage of the
Adam algorithm is that, after offset correction, the learning rate of
each iterative cycle can fall within a certain range, thus stabilizing
the parameters. This algorithm can also calculate different adaptive
learning rates for different parameters. Experiences have shown
that the Adam algorithm can perform well in practice, and is more
computationally efficient compared with other adaptive learning
algorithms (Ruder 2016).

4 BASIC FRAMEWORK O F DATA AND
EXPERIMENTS

We now describe our experiments. In Section 4.1, we discuss
the data used for training and evaluation, and we descibe the
experimental framework in Section 4.2. We compare the models
employed in the experiments, discuss the software and hardware
used in the experiments and present an evaluation of the model
performance.

4.1 Data used in the experiments

We adopted an astronomical simulator to simulate data captured by a
radio telescope. FAST can be used to conduct observations of neutral
hydrogen (H I) and the 21-cm line from the hyperfine transition of
neutral hydrogen emitted at a rest frequency of ∼1420.4 MHz.
Many software packages are available for H I simulation and data
processing. The simulator we used for this study is the HIDE (the H I

data emulator), which was also used in the studies of Akeret et al.
(2017b) to simulate the training data set.

The simulated data are comprised of astronomical data and
RFI. Because HIDE can produce both ‘pure’ RFI and simulated
astronomical data (which already contain RFI), as shown in the
top-left panel of Fig. 6, it is possible to label all the interference
precisely as fundamental references (i.e. the ground truth) for our
experiments. By comparing RFI detected by various algorithms with
the ground truth, the accuracy of each method can be evaluated. The

Figure 6. Simulated data with identified RFI masks obtained using various
algorithms. From left to right, the top images present the simulated
astronomical data, which contain signals and RFI, RFI and the corresponding
RFI mask served as ground truth, in which white denotes RFI and black is
for ‘good’ data, as generated by HIDE (Akeret et al. 2017a). The bottom
images show the results from different methods. It can be seen that the one
obtained with our method resembles most closely the ground truth. The
result of U-Net is not so clean, while that of SumThreshold fails to detect
some of the RFI.

simulated RFI is displayed in the top-centre panel of Fig. 6, with a
corresponding RFI mask shown in the top-right panel.

Experiments have also been conducted with manually labelled
observed data sets captured by FAST in 2018 September, as well
as open access data (Cosmology Research Group from ETH Zurich
2016) acquired by the Bleien Observatory on 2016 March 21
(Akeret et al. 2017a).

4.2 Experimental framework

For the purpose of comparison, our data set has been processed
by several existing RFI flagging methods, including U-Net, KNN
(K-nearest neighbour; Guo et al. 2003), one of the classification
algorithms used in machine learning, as well as SumThreshold.
Similar to Akeret et al. (2017b), we have found that U-Net with
three layers and 64 characters can achieve a good balance between
accuracy and speed, after several cycles of tests. Thus, in this study,
we have adopted the same structure and hyperparameters for RFI-
Net as Akeret et al. (2017b). In addition, we applied Scikit-learn
(Pedregosa et al. 2011), the machine-learning library for Python, to
assist with the implementation of the KNN algorithm.

Specifically, the following experiments have been conducted.

(i) We compared the results obtained from RFI-Net for simulated
data with those from previous methods.

(ii) A detailed analysis of algorithm accuracies was carried out.
(iii) The results obtained from RFI-Net for observed data were

studied to determine whether additional operations were required.
(iv) We used RFI-Net to process fewer training data (i.e. 25,

50 and 75 per cent of the complete data) to validate its ability to
achieve a comparable performance on smaller data sets.

(v) The ability of RFI-Net to overcome the overfitting problem
was demonstrated.

(vi) The training speed was investigated

All these methods have been tested under Ubuntu 16.04 on a Dell
PowerEdge T630 with 32 GB RAM. The deep learning models have
been executed on a NVIDIA Tesla K40c with 12 GB RAM.

The indicators we adopted for experimental evaluations are
precision, recall and the F1 score (see Akeret et al. 2017b; Davis &
Goadrich 2006).
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Precision, which is the fraction of genuine RFI among all flagged
instances, can be considered as the accuracy metric of the following
algorithm:

Precision = True Positive

True Positive + False Positive
. (8)

Recall indicates the fraction of RFI that has been identified among
all RFI, showing the comprehensiveness of the detection:

Recall = True Positive

True Positive + False Negative
. (9)

F1, the reciprocal mean of precision and recall, can be considered
as the overall model performance :

F1 = 2 × Precision × Recall

Precision + Recall
. (10)

It should be noted that, as our observed data were labelled
manually, with no guarantee of completeness of RFI flags, the
related performances cannot be evaluated exactly with the indicators
listed above. They rely on visual inspections, and can only provide
a general approximation of algorithm characteristics.

5 R ESULTS OF EXPERIMENTS

Here, we compare the visual results obtained by our model with
those of previous methods in Section 5.1. This is followed by Sec-
tion 5.2, which proves the advantages of using detailed indicators.
The test results with real observing data are presented in Section 5.3
and the experimental results obtained with smaller training data sets
are listed in Section 5.4. Section 5.5 demonstrates the effects of the
overfitting problem, while the ability of RFI-Net to accelerate the
training process is presented in Section 5.6.

5.1 Comparison of RFI-Net with previous methods

The results of our RFI-Net model, the U-Net model and SumThresh-
old are shown in Fig. 6, with the identified RFI of each method
listed as RFI masks. It can be clearly seen that the result of the
model proposed in this paper shows the greatest resemblance to the
ground truth of our simulated data. The RFI-Net model correctly
labelled most RFI, with only a small amount of data misidentified.
A few flaws in our result only show up in certain details (such
as at the edges of some RFI regions). By comparison, although
the detection result of the SumThreshold algorithm seems to be
relatively clean, with fewer cases of false RFI detections, some of the
RFI is not correctly detected when compared with the ground truth,
resulting in a lower recall rate. For the U-Net model, too many
false-positives have been identified, despite a large amount of RFI
remaining undetected. In addition, U-Net erroneously labels a lot of
‘good’ pixels as RFI, which means its detection result is less ‘clean’
than our model.

5.2 Comparison of accuracy

As illustrated in Section 4.2, the performances of various algorithms
can be measured with scores based on parameter precision, recall
and F1 score. Table 4 lists the results of our RFI-Net model, the
U-Net model, the KNN and SumThreshold with simulated data,
indicating that RFI-Net has outperformed two other methods, with
the ability to detect RFI more accurately and comprehensively.
Although the result obtained with SumThreshold is as accurate
as ours in terms of precision, it failed to detect RFI consistently.

Table 4. Detailed scores of algorithm performances obtained
with simulated data set. The precision represents accuracy,
recall shows detecting comprehensiveness, while the F1 score is
the harmonic mean of these two indicators. The highest scores
for each indicator are shown in bold font.

Precision Recall F1 score

RFI-Net 97.93 95.43 96.67
SumThreshold 97.20 58.64 73.15
KNN 76.83 68.77 72.57
U-Net 80.87 81.30 81.04

Table 5. Detailed scores of performances tested with FAST’s
observations. The best scores of each indicator are shown in
bold font.

Precision Recall F1 score

RFI-Net 97.34 89.12 93.05
SumThreshold 91.20 59.63 72.11
KNN 87.69 94.05 90.75
U-Net 95.11 88.19 91.52

Table 6. Detailed performances obtained using data from the
Bleien Observatory. The highest scores are shown in bold font.

Precision Recall F1 score

RFI-Net 95.61 91.07 93.28
SumThreshold 87.26 58.64 70.14
KNN 70.58 97.60 81.36
U-Net 94.08 89.14 91.54

Although the performance of the CNN-based U-Net method shows a
more balanced performance for all parameters, the detection quality
of its results cannot be compared with those of RFI-Net. However,
KNN shows the worst performance in terms of all three parameters.
In general, these results show that the application of AI for RFI
detection tasks is promising, and our model has a better performance
than previous algorithms.

In Table 5, RFI-Net demonstrates the ability to detect RFI more
accurately in real data. Although here the RFI is more complex than
in the simulated data, RFI-Net has still done the best job.

As shown in Table 6, RFI-Net has achieved the highest precision
and F1 score when tested with data from the Bleien Observatory.
KNN scored the highest accuracy, 97.60, along with a much lower
comprehensiveness. In contrast, SumThreshold failed to achieve
good results, and ranked the last with worst recall and F1 score. U-
Net has performed well, with all three indicators scoring about 90.
Nevertheless, these scores imply that there is still room to further
improve the performance of the RFI-Net model.

5.3 Dependence on extra processing

The suitability of RFI-Net for practical applications has been
evaluated with experiments on real data from FAST, as well as
open access data from the Bleien Observatory. Fig. 7 shows the
results obtained with the FAST data set. Most of the RFI has been
correctly identified with fine detection granularities, although very
few instances have been missed. Results like this can be used
as RFI masks without further processing. In addition, in Fig. 8,
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Figure 7. Left: result obtained with FAST observations, which is the same
as Fig. 4. Most RFI in frequency and time domains, as well as point-like
disturbances, can be detected. However, some of the indistinct RFI has
been missed. Right: RFI flagging mask of FAST observations. Conspicuous
RFI has been successfully identified, whereas some indistinct RFI remains
undetected.

Figure 8. Detection result with data from the Bleien Observatory. Most
of the RFI has been identified, while there are false-positives and missing
marks on the edge of the detected areas.

RFI-Net also shows a competitive performance. All evident RFI
has been successfully flagged, although some insignificant RFI with
flux levels similar to the background has missed detection.

Compared with observed data, our simulated data are simpler
and have been more accurately marked, so the accuracy of detec-
tion obtained with simulated data is higher than with real data.
Thus, labelling observations more precisely would lead to further
improvements in our results.

5.4 Accuracy with a smaller training data set

For a smaller training data set, Figs 9, 10 and 11 compare the
results of our model with the original U-Net model using all
three performance metrics. These results confirm the outstanding
performance of RFI-Net. It can be seen from Fig. 9 that despite
the volume of training data, the recalls of RFI-Net are higher than
those of U-Net. When using all of the training data, the recall of
RFI-Net is 97.5 per cent, compared to 85 per cent for U-Net. While
for 25 per cent of the data set, although the difference between two
models is smaller, the recall of RFI-Net (89 per cent) is still higher
than that of U-Net (82 per cent). This indicates that RFI-Net can
make more comprehensive detections, with very few instances of

Figure 9. Recall of two models trained with different portions of the
complete training data set. It can be seen that with a different sized data
set, the scores of RFI-Net are always higher than those of U-Net, yielding
more stable results.

Figure 10. Precision scores of the two models with different portions of
the complete training data set. The performance of U-Net declines as the
amount of training data is reduced from 100 per cent to 75 per cent, while
the RFI-Net model remains more stable.

Figure 11. The overall performance of the two models, trained on different
ratios of the whole training data, is judged by the F1 score. The result is
similar to the precision. U-Net shows larger fluctuations, while RFI-Net is
more stable, yielding higher scores.

RFI remaining unidentified. From the perspective of data volumes,
a smaller amount of training data does affect the performance of the
model in terms of completeness. The recall of RFI-Net has shown
a significant decrease with a 75–100 per cent training data set, in
contrast to a more gradual decline of the original U-Net. However,
with less than 75 per cent of the original data, the amount of data
has less effect on the recall of our model.

Fig. 10 shows the precision of the detections with different
training data volumes. It can be seen that the amount of training
data had a more significant effect on the original U-Net than RFI-
Net this time. The accuracy of U-Net experienced a decline when
the data volume was reduced to 75 per cent, but then it was restored
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Figure 12. Results of RFI-Net regarding the overfitting problem. The
difference between training and testing data sets with RFI-Net is much
smaller than that of U-Net, which means overfitting can be further reduced
by RFI-Net.

Table 7. Detailed scores on the overfitting problem with three performance
metrics. It can be seen that our RFI-Net has achieved a more consistent
performance.

Precision Recall F1 score
RFI-Net U-Net RFI-Net U-Net RFI-Net U-Net

Training set 98.87 91.86 97.42 85.23 98.14 88.43
Testing set 97.93 80.78 95.43 81.30 96.67 81.04

from 77 per cent to ∼ 85 per cent as the data volume continued to
be reduced. The performance of RFI-Net, however, is much more
stable even without enough data for adequate training. The precision
of our model shows a decrease with less than 50 per cent training
data, which can lead to less accurate RFI detections.

The F1 score, which is the reciprocal average (harmonic mean)
of precision and recall, can be used to demonstrate the overall
performance of each model, as shown in Fig. 11. Still, the volume
of training data can influence the performances of both models.
However, RFI-Net delivered a much more stable curve, with a
gradual decrease in the F1 score. In addition, RFI-Net maintains
a higher score regardless of data volume. In contrast, U-Net
performed less optimally, with a more consistent decline with the
size of the data set.

5.5 Effects of overfitting

The relatively lower accuracy acquired during practical applications
compared with the model training process is called the overfitting
problem. Fig. 12 compares the performance of RFI-Net and U-Net
with our training and testing data sets, respectively. Here, the testing
data come from the same source as our training data, with a volume
∼10 per cent of the latter. It can be seen that RFI-Net exhibits less
degradation in the gradient when transferred from training set to
testing set, whereas U-Net has degraded considerably.

The detailed test results are listed in Table 7. It is clearly shown
that RFI-Net scored similarly on all indicators with both training
and testing data sets. By comparison, U-Net only obtained much
lower scores with our test data. However, it should be noted that such
results are based upon simulated data. Although RFI-Net exhibits
a better consistency with different data sets, it is possible that such
consistency may degrade when dealing with more complicated
observed data, and further investigations on this issue have been
planned.

Figure 13. Loss curves produced by four configurations. The loss decreases
as the number of steps increases. RFI-Net with and without batch normal-
ization (blue and brown, respectively) are both located in the lower part of
the figure, as they converge early into straight lines. The losses of U-Net
and RFI-Net without residual units (green and magenta) are so large, that a
log scale has been applied, in order to show the corresponding curves with
residual units in the same graph.

Figure 14. Zoomed-in view of the lower part of Fig. 13, showing loss
curves of RFI-Net with and without batch normalization. It can be seen that
the introduction of batch normalization can help to smooth and accelerate
the process on a lesser (and insignificant) scale.

5.6 Training speed of RFI-Net

Fig. 13 shows the gradient descents of four configurations during
training. Because the RFI-Net with residual units converges rela-
tively fast, such models both with or without batch normalization
appear at the bottom of the graph. Compared with the original U-
Net, as well as RFI-Net without residual units, it can be seen that
the residual units can reduce the loss significantly. In addition, such
effects take place earlier than for the original U-Net, because of
earlier stabilization. Thus, with their presence, the residual units
can accelerate the gradient descent effectively.

Fig. 14 provides a zoomed-in version of the lower section of
Fig. 13, showing the losses of RFI-Net with and without batch
normalization. The application of batch normalization further im-
proves the acceleration by three orders of magnitude. Thus, although
the application of batch normalization does not introduce many
differences, even with the help of residual units, it still can facilitate
the training process with faster acceleration.

Fig. 15 presents the training rate in terms of accuracy, and shows
that RFI-Net can stabilize itself faster and more smoothly. RFI-Net
with or without batch normalization shows a similar performance,
although the latter model exhibits minor fluctuations and a slight
decline in accuracy. In contrast, the case of RFI-Net without residual
units shows more variabilities, as well as much lower accuracy.
Also, the performance of U-Net is similarly poor, with continued
oscillations even when the accuracy has been stabilized.
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Figure 15. Accuracy of the training process. With the help of residual units,
RFI-Net can reach a stable state faster with fewer disturbances. The batch
normalization has a smaller contribution to model stability and accuracy.

6 C O N C L U S I O N

Flagging RFI robustly is a challenging task. The high sensitivity and
large data rate of FAST mean that it is a challenge to flag RFI and
to avoid false-positives. Although several studies have attempted
to solve this problem, they either exhibit low-precision detections
or require a large amount of manual interventions, leading to a
less-effective data reduction. Thus, they are unsuitable for FAST.

We have proposed the RFI-Net model in this paper, and have
demonstrated that, compared with the U-Net, KNN and SumThresh-
old methods, the performance of RFI-Net is superior in terms
of RFI identification, making more comprehensive detections
possible with higher accuracies, fewer errors, finer edges and
lower false-positives. Our test results show no need for further
manual inspections, thereby improving the efficiency of the data
reduction pipeline. Our evaluations with a smaller training set have
demonstrated the ability of RFI-Net to maintain its performance,
with time and effort required for data preparation greatly reduced,
overfitting minimized and the training process accelerated.
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